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Abstract

A critical feature of many collective choices is the presence of uncertainty at each

time period that cannot be resolved currently. A great challenge to collective choices

in this context arises from the heterogeneity of individual preferences, under which

the unanimity principle often leads to dictatorship. This paper shows that there are

very intuitive reasons that unanimity principle should apply only to simple alternative

comparison. We demonstrate that a non-dictatorial dynamic consistent aggregation

rule becomes possible when a simple unanimity principle is introduced.
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1 Introduction

Many of the economic problems are solved collectively. These issues range from house-

hold consumption and saving decisions to central bank monetary policy and commonly

designed climate policy among governments1. Although collective choices are widely ob-

served, economists do not always agree on what behavioral principles should be imposed
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December 2018 contains common and detailed rules, procedures and guidelines that operationalize the
Paris Agreement for all the member countries.



to create a collective preference. This disagreement stems mainly from the complexity of

most collective choice problems, which usually consists of two layers. First, the choice

problem has a time component. Decisions not only have an impact on the present, but

are also critical for the future. For example, the environmental policy determines future

environmental conditions, which in turn have a huge impact on individual future well-

beings. Second, the choice problem involves uncertainty. That is, the consequences of

a choice decision are usually not resolved. For example, it is extremely uncertain how

carbon emissions would change the temperature of the earth, which is one of the key

determinants of the environment state.

When confronted with a choice problem that involves both time and uncertainty, one

great challenge for collective choice comes from the heterogeneity among individual pref-

erences. Heterogeneous preferences refer to the fact that the consumption values, the pa-

tience levels, and the probability evaluations of uncertainty vary across individuals. The

conflicts in judgment on different parameters exacerbate the difficulty of constructing a

reasonable collective preference. Indeed, heterogeneous preferences are widely present

in the daily collective choice problems. Needless to say that individuals differ in con-

sumption values. A most typical example of heterogeneity in discount factors comes from

the famous Weitzman investigation. Weitzman (2001) found that economists’ opinions on

which factor level to use for discounting the future payoffs differed greatly and could not

be reconciled. This finding was later reconfirmed by Drupp et al. (2018) and others. An

example of individual heterogeneity in the probabilistic judgments of uncertainty comes

from the experts’ probability estimates on in which degree the carbon emissions would

change the Earth’s temperature. In a survey conducted by Heal and Millner (2018), the

probability estimates of changes in the Earth’s temperature varied greatly among experts.

This variability in probabilistic judgments is persistent and difficult to reconcile across

individuals, as those experts come from different professions who use different models

and data for their estimates, making it nearly impossible for an agreement with others by

correcting or updating their own to reach a unified value.

Therefore, in this paper, we want to explore the problem of how to aggregate heteroge-

neous preferences in a framework involving both time and uncertainty. Actually, except

for a few studies like Pivato (2022), most literature considered only either the time setting

or the uncertainty setting. We in particular are interested in the preference aggregation

rule that satisfies dynamic consistency, and discuss what behavioral principles ensure

that collective choices obey such aggregation rule. Specifically, we consider a dynamic
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uncertainty framework similar to Johnsen and Donaldson (1985). We assume that each

individual preference as well as the collective preference over intertemporal choices are

characterized by an expected geometric discounting utility function. In other words, we

use three parameters only to fully characterize a time preference (both individual and

collective), which are, namely, a felicity function, a discount factor, and a probability

measure. Here, the dynamic consistency we consider has two levels of meanings. The

first implication is that, separately, both individual and collective preferences satisfy the

property of dynamic consistency. In fact, most studies consider only this level of dy-

namic consistency. The implicit assumption, therefore, is that collective choices have full

commitment. That is, the initial collective preference is an aggregation of the time-zero

individual preferences, and the collective preference after a certain history of time and

event will be a conditional preference of the initial collective preference. The deficiency

of full commitment is obvious, since the conditional preferences of the initial collective

preference are usually not consistent with the aggregated preferences based on the con-

ditional individual preferences. In a democracy, a choice based on a time-zero collective

preference might be well superseded by a later choice based on an aggregation of up-

dated individual preferences. To avoid such inconsistency, we assign a second layer of

dynamic consistency. That is, the conditional preferences based on the initial collective

preference should always be consistent with the aggregated collective preferences based

on the individual conditional preferences. By requiring the dynamic consistency with

these two implications, we, on the one hand, rule out the unnecessary assumption of full

commitment and, on the other hand, make the collective conditional preference always

remain aggregation-consistent with the individual conditional preferences. At the same

time, it is easy to see that it is the second level of dynamic consistency that makes it nec-

essary to consider and portray the link between the individual conditional preferences

and the collective conditional preference. Among others, Dietrich (2021) also discusses

dynamic consistent aggregation in a two period situation. The dynamic consistency con-

sidered there is about only uncertainty, but not time. However, most decision problems

in practice are affected by both time and uncertainty, which motivates our discussions

about collective decision making that satisfies the dynamic consistency in the context of

Johnsen and Donaldson (1985) framework.

One critical contribution of this paper is to provide an intuitive set of behavioral prin-

ciples to characterize the dynamically consistent aggregation rule, that is, a utilitarian-

maximin-geometric (UMG) rule. Specifically, both in time zero and after any possible
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history, the collective felicity function (resp. probability measure) is a weighted (resp. ge-

ometric) average of the individual felicity functions (resp. probability measures). More-

over, the collective discount factor adopts a maximin perspective on individual discount

factor weights, which is the outcome of a ‘game’ between two conflicting forces, pessimism
and optimism. Actually, the maximin rule is general enough to include many aggregation

rules as special cases such as maximum, minimum and linear rules. By and large, UMG

rule is general and intuitive.

So, what kind of behavioral principles are we suggesting? Before answering this ques-

tion, it is important to note that the aggregation rule above is not compatible with the

unanimity principle, which is ethically superior to all other alternative principles as

claimed by Buchanan and Tullock (1962). The unanimity principle requires that when

comparing two alternatives, if all individuals prefer the former, so should the collective.

In fact, within the Savage (1954) framework, which involves only uncertainty, Hylland

and Zeckhauser (1979) and Mongin (1995) point out that the unanimity principle would

lead to the dictatorship if the collective adheres to an expected-utility preference. Within

the Koopmans (1960) framework, which involves only time, Zuber (2011) and Jackson

and Yariv (2015) obtain a similar impossibility result. Jackson and Yariv (2015) (Page 152)

even pessimistically states: “From a policy perspective, non-dictatorial collective choices

that are rationalizable by some collective utility function either necessitate commitment

devices or involve (choice) reversals over time".

Why, then, does this normatively compelling principle lead to dictatorship? The rea-

son, we believe at least partly, is the improper application of the principle. Indeed, the

unanimity principle is usually applied to arbitrary pair of alternatives. However, this

unrestricted arbitrariness is problematic if the individual preferences are heterogeneous.

Gilboa, Samet and Schmeidler (2004) points out that when there are conflicting value

judgments among individuals as well as conflicting probability judgments, it is likely

that such conflicts will cancel each other out in choice judgements, resulting in coher-

ent preferences among individuals. Once the collective follows the unanimity principle

in this situation, it is difficult to compromise among the conflicting individual parame-

ters and thus has to follow one individual preference exclusively, i.e., the dictatorial rule.

This kind of unanimity, formed by multiple conflicting preference parameters, is coined

spurious unanimity by Mongin (1995).

Therefore, we believe that the scope for applying the unanimity principle should be

limited. When individuals compare a pair of alternatives that require the consideration
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of two or more parameters, the unanimity principle should be adjusted. That is, the col-

lective should not consider individual comparisons of alternatives involving multiple pa-

rameters. This is because a spurious unanimity is easily developed in this situation. Only

when the alternative pairs are influenced by one parameter only should the collective ap-

plies the unanimity principle. This is what we propose: the unanimity principle should

be applied only to the simple comparison. It is noteworthy that the unanimity principle

is also used in a simple way when it comes to Harsanyi (1955), in which individuals have

the same probability judgment and differ only in the value judgments.

In fact, the restriction of the unanimity principle has a twofold purpose. On one hand,

it allows a single collective parameter to be influenced by the individual parameters of

its counterparts only but not other dimensions. This makes meaningful aggregation pos-

sible. On the other hand, this restriction makes the individual comparison simpler, being

influenced by only a single but not multiple parameters. Simplicity helps individuals to

accurately and efficiently reflect their judgments on different parameters. Thus, the col-

lective parameters could be aggregated one by one through this heuristic to form the final

collective preference. It is worth noting that this heuristic scheme has its psychological

basis. As Daniel Kahneman writes in his mega bestseller Thinking, Fast and Slow: "When

faced with a difficult question, we tend to answer an easier one, often without noticing

the substitution." Here, getting individuals to compare alternatives with a mix of multi-

ple parameters is a complex mission. Instead, the simple heuristic is to have individuals

simply compare alternatives that are affected by only a single parameter, thereby aggre-

gating the individual parameters separately. Our idea is embodied in two principles: the

simple unanimity and the unanimous separability principles. Together with the dynamic

consistency principle, continuity and independence of irrelevant alternatives, they fully

characterize the UMG aggregation rule.

Moreover, the heuristics we discuss here are not limited to collective decision making,

which can be applied also to individual decision making in certain situations. A growing

body of evidence from neuroscientific investigations suggests that individual brains pro-

cess and aggregate motivation in parallel. In particular, there is evidence that different

parts of the brain respond differently to timed rewards. In addition, multiple probability

estimates are also formed in the face of ambiguity2. From this perspective, when there

are multiple discount factors, multiple felicity functions, and multiple probabilities in

2Schmeidler (1989) and Gilboa and Schmeidler (1989) suggest axiomatically that individuals may hold
multiple priors when the environment is ambiguous. Hsu et al. (2005) provided evidence in the brain-
image in Ellsberg (1961) experiments to confirm this idea.
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the individual’s own mind, the aggregation of heterogeneous preferences that we study

will be relatively helpful in resolving individual decisions if it is still in the individual

decision maker’s interest to make dynamically consistent decisions.

In this paper, we consider also other aggregation rules for discount factors. As Halevy

(2015) pointed out, the expected geometric discounting function is not the only intertem-

poral function that satisfies the dynamic consistency and aggregation can be discussed in

a broader class of intertemporal utilities (Millner and Heal (2018a)). We therefore con-

sider such extension and discuss how the heuristic approach contributes to the formation

of a collective aggregation rule that satisfies the dynamic consistency when the individual

and collective preferences obey the expected additive utility functions.

In sum, this paper is centered on what might be called a generic argument why unanim-

ity principle should be limited in a simple manner. The basic logic is intuitive and yet,

we believe, powerful and general. In a sense, the relentless force of unanimity principle

giving rise to the impossibility result under heterogeneous preferences will act toward

dissipating it when the very principle is limited in a simple manner.

The paper is structured as follows: in the next section we will establish the model

environment. Section 3 will first define the UMG rule, then discuss the principles used

to characterize it, and state one of our main results. In section 4, we will discuss the

expected additive utility function and the aggregation based on this assumption. Section

5 discusses the related literature. We conclude in Section 6. All proofs are collected in

the Appendix.

2 The Model

2.1 Time and Uncertainty

Time is discrete and varies over the infinite horizon T = {0,1, . . .}. At each period t > 0, an

event ωt is drawn from a finite set S , following an initial event ω0. The state space is Ω =

ST with the product algebra. A typical state is a T -indexed sequences ω = (ω0,ω1,ω2, . . .).

The t-period history of events is denoted by ωt = (ω0,ω1, . . . ,ωt)3 and the set of possible

t-histories by S t. S =
⋃

t>0S t is the set of all possible histories.

Consumption in any history lies in the set X, formally a convex and compact subset of a

vector space. A consumption process has a form c = (ct), where ct : S t→ X for each t > 0.

The set of all such consumption processes, denoted by C , is a mixture space under the

3An event ωt can be identified with the subset of state space such that ωt = {ω′ ∈Ω : ω′t = ωt}.
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obvious mixture operation. An important subset of C is XT , referred to as the subset of

consumption streams. To elaborate, we identify the consumption process c = (ct) for which

each ct is a constant with an element ℓ in XT . The consumption levels delivered by any

consumption stream ℓ depend only on time t but not on the state ω. Thus, a consumption

stream involves time but not uncertainty.

Each individual has a preference ordering on C at any time-event pair represented

by (t,ω). Denote by ≿ the time-zero preference and by ≿t,ω the latter preference ordering

conditional on the information prevailing at (t,ω). We consider the collection of prefer-

ence orderings {≿t,ω} := {≿t,ω: (t,ω) ∈ T ×Ω}.
Environments like this, involving time and uncertainty, are the foundations of most

modern economic models, especially in macroeconomics and finance. Our primary in-

terest is to study those theoretical individuals whose preferences are both additive and

dynamically consistent over time and across states.

Let us introduce some further terminologies. Say that a felicity function u : X → R is

mixture linear if u(αx + (1 −α)y) = αu(x) + (1 −α)u(y) for all x,y in X and 0 ≤ α ≤ 1. Say

that u : X → R is bounded if maxX u and minX u both exist in R. Say that a measure p on

Ω has full historical support if p(ωt) > 0 for every ωt ∈ S . Let U and P denote the set

of bounded mixture linear functions and the set of probability measures on Ω with full

historical support, respectively.

Though the utility range of ct for each t > 0 is finite for any consumption process c

in C , the utility range of c needs not be finite given the infinite horizon. To handle the

complication caused by this infinity, we assume that each felicity function is bounded,

which guarantees that the representation function defined below is always bounded for

all consumption process c. To start with, we assume that the time-zero preference ≿ has

the following representation function.

Definition 1. A function W on C is a expected geometric discounting utility (EGDU) if

there exists a felicity function u ∈U , a discount factor 0 < δ < 1 and a probability measure

p ∈P such that for all c ∈C ,

(1) W (c) = Ep

[ ∞∑
t=0

δtu(ct)
]
.

LetW denote the set of all EGDU functions. To define the preferences ≿t,ω, we follow

the approach and terminologies of Johnsen and Donaldson (1985) and assume that the

preference orderings under time and uncertainty satisfy two different properties. The
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first condition is the conditional independence: the conditional preference ≿t,ω depends

only on the available information (t,ω), which rules out the possibility that neither any

consumption at a time prior to t nor any history event that may have occurred, but did

not, has an impact on ≿t,ω. The second condition is the dynamic consistency: for two

consumption processes identical up to time t, if the former process is weakly preferred

to the latter one in every history at t+ 1, then the former process should be also preferred

at (t,ω). Thus, we assume that there exists a felicity function u ∈ U , a discount factor

0 < δ < 1 and a probability measure p ∈P such that: for every t and ω, ≿t,ω is represented

by Vt,ω, where

(2) Vt,ω(c) = Ept,ω

[∑
s≥t

δs−tu(cs)
]
,

in which the conditional probability pt,ω is defined by, for any E ⊆Ω,

(3) pt,ω(E) =
p({ω′ ∈ E : ω′t = ωt})

p(ωt)

As for the preference orderings defined above, the implied ordering ≿t,ω satisfies the

conditional independence and the dynamic consistency. Therefore, take a triple (u,δ,p) ∈
U × (0,1)×P , the functions {Vt,ω} as in (2) are uniquely determined.

In our setting, each ≿t,ω can be transformed into a time-zero preference under the

assumptions of the conditional independence and dynamic consistency. For a t-period

history ωt ∈ S t and a τ-period history ωτ ∈ Sτ , we use (ωt,ωτ ) to represent the (t + τ)-

period history ω̄t+τ as a concatenation of histories, i.e. ω̄t+τ
s = ωs for s ≤ t and ω̄t+τ

s = ωτ
s−t

for s ∈ [t + 1, t + τ]. Fix a consumption process c = (cτ ) and a time-state pair (t,ω), we

define a consumption process c′ = (c′τ ) as an embedding of c on the event ωt by: c′τ(ωτ ) =

ct+τ(ωt,ωτ ) for any τ > 0 and ωτ ∈ Sτ . Fix a probability distribution p ∈ P and a time-

state pair (t,ω), we define a probability distribution p′ ∈ P as an embedding of p on the

event ωt by: p′(ωτ ) = pt,ω(ωt,ωτ ) for any τ > 0 and ωτ ∈ Sτ .

Definition 2. A collection of functions {Wt,ω} is a generic transformation of {Vt,ω} defined

by (u,δ,p) as in (2) if, for each (t,ω), Wt,ω ∈W is determined by
(
u,δ,p′

)
where p′ ∈P is

an embedding of p on the event ωt.

In fact, Wt,ω and Vt,ω are generically equivalent in the sense that, for any consumption

plan, its estimated value at the present time and its estimated value after the event ωt is
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realized are always equal, i.e. W (c′) = Vt,ω(c) for all c,c′ ∈ C with c′ an embedding of c

on the event ωt. Thereafter, we will work with the generic version of preferences defined

above.

2.2 Society

A society consists of finite individuals, indexed by i ∈ I = {1, . . . ,n}. Each individual i is

endowed with a collection of preferences {≿it,ω} on C , which are generically represented

by a collection of time-consistent expected utilities {W i
t,ω}.

We assume that a social planner takes a multi-profile approach to determine its pref-

erence orderings. That is, a social planner adopts a preference aggregation rule, which is

a function transforming the individual preference profiles into a social utility form. For-

mally, a preference aggregation rule is a function f :W n→W . A social planner applies

such invariant preference aggregation rule repeatedly at time zero and under each un-

folded time-event. At each time-event (t,ω), the social planner collects individual generic

conditional preferences (W 1
t,ω , . . . ,W n

t,ω) to derive a social generic conditional preference

utilising this aggregation rule:

Wt,ω = f (W 1
t,ω , . . . ,W n

t,ω).

This aggregation procedure reveals two essential conditions we set out. The first con-

dition is history and future independence: the social conditional preference at (t,ω) only

depends on the individual conditional preferences at (t,ω). That is, the past and future

individual preferences do not have an impact on the formation of the current social pref-

erence. Since every individual preference is conditionally independent, it is natural that

social decisions need not to keep track of the individual behaviors in the past or speculate

the individual behaviors in the future. The second condition is time and event indepen-
dence: the social generic function only depends on the individual generic functions, but

not on when and under what event these individual functions are obtained. In other

words, when faced with the same information, social decisions should be invariant hence

not altered by the time when or the manner by which the information is acquired.
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3 Dynamic Consistent Aggregation

3.1 UMG Rule

What kind of aggregation rule should the society actually adopt? In this paper, the rule

we consider satisfies two important properties that have been recognized in consensus.

First, the aggregation rule satisfies the separability. It is natural to assume that the instan-

taneous utility function, discounting function and probability measure of society should

depend only on those functions of individuals, respectively. In fact, we do not allow, for

example, the social probability to be influenced by the individual patience. Such separa-

bility also corresponds to the fact that the preferences of both the society and individuals

are composed of these three independent aspects. If we consider that all information and

judgments of individuals about events are adequately reflected in the individual prob-

ability measures, then the social probability should be limited to individual probability

measures only, independent of other factors.

The second property we impose on the aggregation rule is the consistency. To make

the overall model consistent, the assumptions imposed on individual preferences should

be similarly imposed on social preferences. In this sense, the social preference should

also be dynamically consistent. This requires that the aggregation function not only

translates the individual preference profiles into a social time-additive expected utility

function at each time-event pair, but also ensures that the social preference generated

by the aggregation function meets the dynamical consistency after the individual prefer-

ences are updated in response to new information. In addition, from a normative point

of view, it is difficult to imagine a society adopting a dynamically inconsistent updat-

ing rule for statistical decision problems. To satisfy these two properties, we propose

the following aggregation rule by stating some notations first. Recall that I = {1, . . . ,n}.
Let ∆(I ) = {γ ∈ [0,1]n :

∑n
i=1γi = 1} be the set of all possible weights to each individual.

Let K(∆(I )) denote the space of all non-empty closed convex sets of weights, endowed

with the Hausdorff topology. A weight-set collection is a non-empty compact collection

Γ ⊆ K(∆(I )). Each element Υ ∈ Γ is a non-empty closed convex set of weights.

Definition 3. A preference aggregation rule f :W n→W is Utilitarian-Maximin-Geometric
(UMG) if there exist numbers αi ≥ 0 and βi > 0 with

∑n
i=1αi =

∑n
i=1βi = 1, and a collec-

tion Γ ∈ K(∆(I )) such that for every W ∈W n, the social generic expected additive utility

W = f (W) satisfies:

• its felicity function is utilitarian, i.e. u =
∑n

i=1αiui ;
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• its discount factor is maximin, i.e. δ = max
Υ ∈Γ

min
γ∈Υ

n∑
i=1

γiδi ;

• its probability measure is geometric, i.e. p on every S t is given by
∏n

i=1[pi(ωt)]βi up

to a multiplication constant.

The UMG rule is indeed a separating rule. In this case, the social felicity function is a

weighted sum of individual felicity functions, while the social probability is a weighted

product of individual probabilities. The obedience to utilitarianism is a widely used prin-

ciple for social felicity function, which we will not dwell on. The heuristic for the social

probability is to multiply all weighted roots of individual probability values. Obviously,

this heuristic satisfies the dynamic consistency, as the society aggregates their posteriors,

and the society aggregates their priors first and then applies the updating rule, both yield-

ing the same result. In contrast to other probability aggregating rules, this is compelling

because it means that the society behaves like a Bayesian agent - it has a consistent set of

priors that are updated according to the Bayes rule. Notice that the maximin aggregation

of discount factors is actually quite general, which includes maximum, minimum, and

linear rules as special cases. Indeed, if Γ =
{
{γ} : γ ∈ Υ

}
for some Υ ⊆ ∆(I ), the maximin

rule corresponds to δ = maxγ∈Υ
∑n

i=1γiδi . In particular, if Υ includes all the standard

basis vectors of R
n, it corresponds to the maximum rule, i.e. δ = maxi∈{1,...,n}δi . Simi-

larly, if Γ = {Υ }, the maximin rule corresponds to δ = minγ∈Υ
∑n

i=1γiδi . In particular, if

Υ includes all the standard basis vectors of Rn, it corresponds to the minimum rule, i.e.

δ = mini∈{1,...,n}δi . Furthermore, if Γ = {Υ } is a singleton and Υ = {γ} for some γ ∈ ∆(I ) is

also a singleton, the maximin rule corresponds to δ =
∑n

i=1γiδi , the linear rule.

3.2 Principles

So what principles do the aggregation functions need to follow in order to be represented

as a UMG rule? In this section, we are going to specify these principles that characterize

the aggregation rule. In particular, we will carefully discuss the rationality that these

principles possess in order to convince the society to accept them.

Here are some notations needed for us to explicitly state the principles. A felicity
profile is a vector u = (u1, . . . ,un) ∈ U n of individual felicity functions. A discount profile is

a vector δ = (δ1, . . . ,δn) ∈ (0,1)n of individual discounting functions. A probability profile
is a vector p = (p1, . . . ,pn) ∈ P n of individual probability measures. A preference profile is

a vector W = (W1, . . . ,Wn) ∈W n of individual preferences.
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The first principle formalizes what is usually meant by dynamic consistency.

Dynamic Consistency (DC): For all {Wt,ω} and {Wt,ω}, if W0 = f (W0), then Wt,ω = f (Wt,ω)

for all (t,ω).

This principle assumes that W0, the aggregation of the time-zero individual preferences

W0, which is followed by those conditional preferences at (t,ω), Wt,ω, should yield the

same result as the aggregation of individual conditional preferences at (t,ω), f (Wt,ω). In

fact, this consistency contains two parts. The first part ensures that the aggregated social

probability satisfies the property of ‘External Bayesianity’. That is, the aggregated social

probability at time zero followed by Bayesian updating is always the same as the aggre-

gation of individual updated probabilities. The second part ensures that the aggregation

is consistent over time. This means that the aggregated social discount factor remains

constant for any given period.

We acknowledge that consistency is not infallible. However, if the principle of con-

sistency is not upheld, social behavior may fall into a certain disorder unless conflicts

between social selves at different times and under different events can be convincingly

rationalized.

Next we assume that the aggregation function satisfies the property of continuity. This

principle is seen as more of a technical requirement, which we do not elaborate further.

Continuity: If a sequence of preference profiles W1, . . . ,Wm,. . . pointwisely converges4 to

W as m→∞, then f (W1), . . . , f (Wm), . . . pointwisely converges to f (W) as m→∞.

The next principle restricts the aggregation rule to be separable among felicity, dis-

count factor and probability. It is worth emphasizing that the following axiom of separa-

bility was originally proposed by Hylland and Zeckhauser (1979), which is extended into

our framework. For any u ∈ U , let u denote vector u = (u, . . . ,u). Similarly, denote δ and

p the vector (δ, . . . ,δ) and (p, . . . ,p), respectively.

Unanimous Separability (US): There exist functions g : U n→ U , h : (0,1)n→ (0,1) and

k :P n→P such that, for any W ∈W n characterized by (u,δ,p), the social lifetime

utility f (W) is equipped with (g(u),h(δ), k(p)). Furthermore, g(u) = u, k(δ) = δ and

k(p) = p for all u ∈U ,δ ∈ (0,1),p ∈P .

4Notice that each Wm maps a consumption sequence c ∈ C to a real vector according to the expected
discounted utility summation, Equation (1), the pointwise convergence here refers to the convergence of
Wm(c) to W(c) as m→∞ for each c ∈C .
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Because beliefs about likelihood are irrelevant of evaluations about patience and taste,

the social probability should not depend on these two factors. The same reasoning can

be applied to the formation of social patience and social tastes as well. This property is

imposed by means of different aggregation functions for the three factors. That is, the

social felicity function (resp. discount factor, or probability measure) is a function only

of the individual felicity profile (resp. individual discount factor profile, or individual

probability profile). Also, US ensures that if the individual felicity utility is the same, the

social felicity utility must be consistent with that of the individuals’. The same conclusion

applies to the aggregation of discount factors and probability functions as well.

A central principle is Simple Unanimity. Some parts of the axiom below are illustrated

by parameters to reflect the behavioral meaning in a simple and intuitive way. Indeed,

the statement of the behavorial preferences to which they correspond is straightforward.

Simple Unanimity (SU):
(i) if u(x) ≥ u(y) for x,y ∈ X, then g(u)(x) ≥ g(u)(y);

(ii) for all t and all ωt,ω′t ∈ S t, if p(ωt) ≥ p(ω′t), then h(p)(ωt) ≥ h(p)(ω′t).

Part (i) in fact responds to the fact that if every individual prefers a certain constant

consumption stream, then the society also prefers that consumption stream. Accordingly,

it states that if every individual felicity value of an outcome x is higher than that of y, then

so is the society.

The second part requires that for any two contemporary historical events, if each in-

dividual believes that the probability of the former event is greater than that of the latter,

then the society should also follow this probability ranking. It is worth noting that this

requirement is different from the standard principle of probabilistic agreement, which

requires this principle to hold for any pair of arbitrary events. In contrast, our principle

applies only to event pairs of t-period histories (elements in S t). Moreover, it does not ap-

plies to events that, though of the same time, are composed of different historical events

before time t. It is easy to see that the principle of probability unanimity without event re-

strictions is contrary to the geometric probability aggregation rule, while that with event

restrictions as in part (ii) is consistent with the geometric probability aggregation rule.

In contrast to the classical one, our SU rules out the possibility that unanimity among

individuals is generated by multiple heterogeneity in felicity, discounting and probability

functions among individuals. In the phrase of Mongin (1995), our SU avoids the spurious
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unanimity that arises from individual heterogeneity.5

The last axiom is actually widely applied in the multi-profile aggregation method to

establish connections between various preference profiles.

Independence of Irrelevant Alternatives (IIA):

(i) for any u,u′ and any x ∈ X , if u(x) = u′(x), then g(u)(x) = g(u′)(x);

(ii) for any u,u′ ∈ U , x,y ∈ X and δ,δ′, if u(x) + u(y)δi ≥ u′(x) + u′(y)δ′i for all i, then

g(u)(x) + g(u)h(δ) ≥ g(u′)(x) + g(u′)h(δ′);

(iii) for any p,p′ and any t, if
pi(ωt)
pi(ω′t)

=
p′i(ω

t)
p′i(ω

′t)
for all i, then

k(p)(ωt)
k(p)(ω′t)

=
k(p′)(ωt)
k(p′)(ω′t)

.

Part (i) states that if two utility profiles have the same utility evaluation for an al-

ternative, then the social utility, regardless from which utility profile is it aggregated,

should have the same utility evaluation for that alternative. This principle reflects the

fact that the society is only concerned with the individual utility value of consumption,

rather than what the individual utility functions are. In fact, this part has been used by

d’Aspremont (1985) and Mongin (1994) to establish the Harsanyi aggregation result in

the multi-profile setting.

Part (ii) considers arbitrary pair of preference profiles in which different individuals

have the same felicity function. The behavioral implication of part (ii) is that, when con-

sidering the consumption behavior in two consequential periods, if the utilities of the first

preference profile are greater than that of the second, then the social utility of aggregat-

ing the former preference profile will also be greater than aggregating the latter one. In

fact, this is the counterpart of part (i) regarding the discount factor. Similarly, this prin-

ciple also reflects the fact that society is only concerned with the individual consumption

utility in the two consequential periods, rather than what the individual discount factors

are. It is worth noting the restriction we put on the felicity function. Without it, this

axiom would be in a similar predicament as spurious unanimity.

According to the hypothesis of part (iii), the probability ratios under any two history-t

events are equal between each pair of individual probabilities in p and p′. Therefore, the

aggregated probabilities for p and p′ should yield the same ratio under these two events.

In fact, if we extend the notion of common-ratio from the pairs of single historical events

to that of sets of historical events, it is not difficult to see that the aggregation rule we

5We refer to Mongin (1995) for a detailed discussion of spurious unanimity.

14



consider does not always satisfy such principle. This is the reason why we restrict to

single historical events.

To better motivate this principle, consider a situation in which consumption does not

change in any period except for period t. Thus, the social planner is only concerned with

the impact that the social decision may have on consumption in period t. Specifically,

society is faced with two choices. Choice A: consume x if ωt is realized, and consume z

otherwise. Choice B: consume y if the event ω′t is realized, and consume z otherwise. As

mentioned earlier, social choice depends on each individual preference between A and

B. Assuming that each individual has exactly the same felicity function u and discount

factor δ, the differences among individuals respond only to the likelihood judgment of

the events. Thus, each individual preference between A and B depends only on the prob-

ability ratio of the two events, ωt and ω′t. That is, choice A is preferred to choice B if

and only if its probability ratio of ωt to ω′t is greater than the ratio of utility differences

between y,z and x,z (by assuming felicity of x is strictly higher than that of z). Now con-

sider two different probability profiles p,p′, if under which each individual has exactly

the same probability ratio over all events, then each individual i, regardless of his belief

being pi or p′i , always has the same choice between A and B. In other words, whether

the individual probability profile is p or p′, the individual preference profile over A and

B does not change at all as long as the common-ratio condition holds. Therefore, it is

compelling that the social preference between A and B should not change regardless of

the individual probability profile being p or p′. The invariance of social preferences is

equivalent to the fact that the social aggregated probabilities also have the common ratio

for such event pair.

3.3 Characterization Result

We can now state our main result.

Theorem 1. A preference aggregation rule f :W n→W satisfies DC, Continuity, US, SU and
IIA if and only if it is UMG.

The five axioms presented above characterize that the social utility obeys the UMG

aggregation rule, thus maintaining dynamic consistency both in time and in uncertainty.

It is well known that the geometric mean of individual probabilities is the only probabil-

ity aggregation rule that makes the social probability remain consistent. However, this

uniqueness property does not apply to the maximin aggregation of individual discount

factors.
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It is not difficult to find that if we simply replace the social discount factor with, say, a

geometric aggregation function, (a rule will be discussed extensively in the next section.)

the resulting new social function still satisfies the dynamic consistency property. This

is, of course, determined by the nature of the social and individual functions as well as

the separability of aggregation. Here, we require that the social and individual functions

belong to the same domain W . Thus, the individual discount factor profile is always

the same regardless of time-event (t,ω). We believe that maximin rule is an appropriate

aggregation function since it is general enough to include many popular rules as special

cases.

4 Expected Additive Utility Model

In this section, we relax the stationary discounting for EGDU and consider a larger set

of preferences. Consider a sequence of time-varying discount factors δ(0),δ(1),δ(2), ...

where δ(t) denotes for an agent’s discount rate at period t6. Say d : T → R is a discount

function if d is strictly decreasing and d(0) = 1. d is interpreted to be associated with

some time-varying discount factor sequence δ(0),δ(1),δ(2), ... with d(t) = δ(1)δ(2) · · ·δ(t).

LetD denote the set of discount functions. Now, we assume that the time-zero preference

≿ has the following representation function.

Definition 4. A function W : C → R is an expected time-additive utility (ETAU) if there

exists a felicity function u ∈ U , a discount function d ∈ D , and a probability measure

p ∈P such that for all c ∈C ,

(4) W (c) = Ep

[ ∞∑
t=0

d(t)u(ct)
]
.

In fact, ETAU includes many popular models as special cases. For instance, if d(t) =

βδt for t ≥ 1, then d is a quasi-hyperbolic discounting function. LetW + denote the set of

expected time-additive utilities. Clearly,W ⊂W +.

To define the preference ≿t,ω, we also require that it satisfies two properties, condi-

tional independence and dynamic consistency, as before. However, we do not require the

preferences to be stationary. Thus, we assume that there exist a felicity function u ∈ U , a

discounting function d ∈ D and a probability measure p ∈ P such that: for every t and

6Discounting a unit of consumption from period t to period t − 1, for all t ≥ 1.
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ω, ≿t,ω is represented by Vt,ω, where

(5) Vt,ω(c) = Ept,ω

[∑
s≥t

d(s)
d(t)

u(cs)
]
.

in which the conditional probability pt,ω is defined as in (3). As for the preference or-

derings defined above, the implied ordering ≿t,ω satisfies conditional independence and

dynamic consistency. Therefore, take a triple (u,d,p) ∈U ×D ×P , the functions {Vt,ω} as

in (5) are uniquely determined. For the similar reason as we discussed above, each ≿t,ω
can be transformed into a time-zero preference and, therefore, can be represented by an

ETAU.

Definition 5. A collection of functions {Wt,ω} in W + is a generic transformation of {Vt,ω}
defined by (u,d,p) as in (4) if, for each (t,ω), Wt,ω is determined by

(
u,dt, p

′
)
, where

dt(τ) = d(τ+t)
d(t) for all τ ∈ T and p′ ∈P is an embedding of p on the event ωt.

In the current framework, if the social discount function still adheres to the linear ag-

gregation rule, i.e. k(d) =
∑n

i=1βidi , then the social function would not satisfy the dynamic

consistency property. In fact, at time t, the social discount function k(dt) =
∑n

i=1βidit.

Time consistency requires that, for τ ∈ T ,∑n
i=1βidi(t + τ)∑n

i=1βidi(t)
=

n∑
i=1

βi
di(t + τ)
di(t)

The only case for which this equation holds is when certain βi is one and the rest are

zero. To avoid the situation where the social discount function is always determined by a

particular individual discount function, while maintaining the dynamic consistency, we

consider the following aggregation rule.

Definition 6. A preference aggregation rule f :W +n→W + is utilitarian-geometric-geometric
(UGG) if there exist nonnegative numbers αi ,βi and γi with

∑n
i=1αi =

∑n
i=1βi =

∑n
i=1γi = 1

such that for every W ∈W +n, the social generic utility W = f (W), where

• its felicity function is utilitarian, i.e. u =
∑n

i=1αiui ;

• its discounting function is geometric, i.e. d(t) =
∏n

i=1[di(t)]γi for all t ∈ T ;
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• its probability measure is geometric, i.e. p on every S t is given by
∏n

i=1[pi(ωt)]βi up

to a multiplication constant.

In order to fully characterize this aggregation rule, we only need to make a few adjust-

ments to the existing axioms. We first need to adjust the US axiom. Obviously, h function

is now no longer based on the discount factors, but on the discount functions. We denote

d ∈D n the discount function profile.

US+: There exist functions g : U n → U , h : D n → D and k : P n → P such that, for all

W ∈W +n characterized by (u,d,p), the social lifetime utility f (W) is equipped with

(g(u),h(d), k(p)). Furthermore, g(u, . . . ,u) = u, k(d, . . . ,d) = d and k(p, . . . ,p) = p for all

u ∈U ,δ ∈ (0,1),p ∈P .

Second, the axiom, IIA(ii), used to describe the maximin aggregation of discount fac-

tors will no longer apply since the discount function aggregation rule is geometric. In-

stead, we impose an alternative axiom.

Say a consumption stream ℓ ∈ XT is diperiodic if there exist s ∈ T and x ∈ X such that

ℓt = x for all t ∈ T \ {0, s}. Say two consumption streams ℓ,ℓ′ ∈ XT are co-diperiodic if there

exists s ∈ T and x ∈ X such that ℓt = ℓ′t = x for all t ∈ T \ {0, s}.

SU (iii)+: Let W ∈W + be equipped with u = (u, . . . ,u) and d ∈D n. For any co-diperiodic

consumption streams ℓ,ℓ′, if W(ℓ) ≥W(ℓ′), then f (W)(ℓ) ≥ f (W)(ℓ′).

Theorem 2. A preference aggregation rule f : W +n → W + satisfies DC, Continuity, US+,
SU(i)(ii)(iii)+ and IIA(i)(iii) if and only if it is UGG.

In this result, if the individual discount functions are exponential, then the social

discount function is also exponential and is a geometric average of individual discount

functions, which is different from what we derive in Theorem 1.

5 Related Literature and Discussion

Traditional studies of collective decision making usually assume that the individual pref-

erences satisfy belief homogeneity, e.g., Harsanyi (1955). While this assumption facili-

tates the aggregation of preferences and hence welfare analysis, it is quite different from

the reality. Therefore, most recent studies have turned to the assumption that individual

preferences are heterogeneous. As stated in the Introduction, many studies have shown
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that the heterogeneity assumption takes away the original magic of the unanimity prin-

ciple. In an uncertain setting, Mongin (1995) and Chambers and Hayashi (2006) found

the unanimity principle to be incompatible with even Savage’s axioms 3 and 4. To break

through the impossibility theorem, Gilboa, Samet and Schmeidler (2004) was the first to

propose the concept of restricted consistency and proved that the principle is consistent

with the linear belief aggregation rule. This aggregation rule was obtained by Billot and

Qu (2021a) in a more general framework. Dietrich (2021) pointed out that the linear av-

erage of probabilities does not necessarily satisfy the dynamic consistency and creatively

proposed how to characterize the belief geometric average aggregation rule. However, as

pointed out by Pivato (2022), the axiomatization is not done in a dynamic framework,

as ours. In this sense, this paper addresses how to characterize the geometric rule in a

dynamic framework, and therefore responds to Pivato’s concern in a complete way.

It is worth noting that many studies based on the uncertainty framework abandon

the assumption of collective expected utility preferences in favor of the collective non-

Bayesian preference assumption. This assumption is certainly a reasonable one under

ambiguity, or situations where the collective lacks the ability to assign individual weights.

Studies based on the non-Bayesian model, like Schmeidler (1989), Gilboa and Schmeidler

(1989), include Crès, Gilboa and Vieille (2011), Alon and Gayer (2016), Qu (2017) among

many others. However, the belief aggregation rules provided by these studies in general

do not satisfy dynamic consistency in the sense of Epstein and Schneider (2003). There-

fore, how to characterize a dynamically consistent collective maxmin expected utility will

be one of the important topics for future research. Alternatively, Danan et al. (2016) stud-

ied the aggregation of incomplete preferences like Bewley (2002). Although their result

satisfies the dynamic consistency, incomplete preference assumptions often create diffi-

culties for collective choice. Therefore, how to complete the preference so that it remains

dynamically consistent still needs further research.

In the pure time setting, both Zuber (2011) and Jackson and Yariv (2015) found the

unanimity principle to be incompatible with time consistency. In the environment where

individuals only differ in discount factors, Chambers and Echenique (2018) proposes

three rules for aggregating discount factors. One of them suggests aggregation through a

weighted average method. This aggregation rule is characterized by Billot and Qu (2021b)

under heterogeneous preferences. In contrast, Feng and Ke (2018)7 proposed intergen-

7See Bernheim (1989), Farhi and Werning (2007), Caplin and Leahy (2004) for further justification that
the collective discount factor should be higher than that of all individuals.
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erational unanimity and characterized a constant collective discount factor that is larger

than any individual factor. 8 Chichilnisky, Hammond and Stern (2020) argues that future

generations are threatened with extinction, and thus proposes a social discounting of ex-

tinction. There are many other approaches to study collective time consistency. Similar

work, but within a continuous time framework, was studied by Drouhin (2020). How-

ever, the biggest difference with this paper is that these above studies do not consider the

issue of uncertainty. Therefore, the research methods used are also different from this

paper.

Interestingly, Millner and Heal (2018b) finds that if we allow collective preferences

to not follow the time invariance principle, then we can ensure that collective choices

satisfy time consistency by changing the individual weights at different times. This is in

contrast to the invariance of weights required in this paper. Similarly, it might be con-

ceivable to make collective choices satisfy dynamic consistency by modifying the weights

corresponding to each parameter of each time-event pair in our dynamic framework.

However, even if this idea could be implemented, the dynamic consistency it satisfies

is not entirely plausible. When the weights are variable, it is easy to imagine that even

when two generic profiles are identical, they correspond to completely different aggre-

gation weights. However, the collective needs justifiable reasons beyond the pursuit of

dynamic consistency to allow the collective to choose differently in the face of perfectly

same generic profiles of individual preferences.

The closest study to this paper is Pivato (2022), in which the framework also incor-

porates both time and uncertainty. However, Pivato (2022) argues that collectives should

only aggregate stable individual parameters. In contrast, when the individual parameter

is unstable, the collective does not have to apply any aggregation rule and should instead

select that parameter in a discretionary fashion. Since the conditional probabilities of in-

dividuals will vary depending on the information realizations, thus Pivato (2022) argues

that the probabilities of individuals are unstable. Therefore, the collective should not ag-

gregate the probabilities of individuals. Relatively, since the individual felicity functions

are invariant with respect to different information, society should aggregate them. Since

the aggregation rule proposed in this paper is separable, our proposed method can still

be applied to the case where only certain parameters are aggregated and not others. It is

particularly noteworthy that, unlike this paper, the Pivato (2022) model does not include

8Drugeon and Wigniolle (2020) studied a similar collective decision problem that was studied by as-
suming superlinear discounting of individuals.
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the discount factor and does not discuss the dynamic consistency of collective choices.

6 Conclusion

The main message conveyed in this paper is that when aggregating heterogeneous prefer-

ences of consumption processes in a non-dictatorial way, it is only necessary to respect the

unanimity principle in a simple manner (separately), but not in the traditional sense (en-

tirely). The idea of simple unanimity not only effectively avoids spurious unanimity, but

also facilitates individuals to accurately convey each parameter value one by one, mak-

ing non-dictatorial aggregation rule possible. This insight is not only useful for solving

aggregation problems, but also for a certain type of individual decision making. Under

incomplete preferences, individual preferences can be represented by multiple utility

functions (Galaabaatar and Karni (2013)), and our insight may serve individuals to com-

plete their preferences when they have to make certain decisions.

Many of the research (Marglin (1963),Feldstein (1964),Jackson and Yariv (2014)) seem

to suggest that policymakers cannot avoid a dynamically inconsistent representative agent.

The results of this paper suggest that this frustrating finding is rooted in spurious una-

nimity principle. Therefore, policymakers should avoid adopting it in the traditional

sense and instead respect only simple unanimity principle. In practice, policymakers

may not need individuals to compare all possible policies because of the multiple com-

plexities involved. Instead, policymakers might replace them with a series of simple

comparisons, as Kahneman suggests. Such comparisons, for instance, may include sep-

arately comparing different experts’ discount factors, and comparing different experts’

probability estimates of events.

APPENDIX

A Preliminary Results

In this appendix we review some established analytic results and notions that are used to

prove the results in the main text.
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A.1 Functional Analysis

In this subsection we mainly adopt the concepts from Gilboa and Schmeidler (1989). Let

L be a non-singleton interval in the real line. 1 is the vector in R
n that has 1 in every

coordinate. For any φ,ϕ ∈ Rn, we write φ ≥ ϕ (resp. φ > ϕ) if φi ≥ ϕi (resp. φi > ϕi) for

each i = 1, . . . ,n. For a in R, aφ is the scalar product, i.e. (aφ)i = aφi for each i = 1, ...,n,

and ⟨φ,ϕ⟩ =
∑n

i=1φiϕi is the inner product of vectors.

A functional I : Ln→R is called

• monotonic if I(φ) ≥ I(ϕ) for all φ,ϕ ∈ Ln with φ ≥ ϕ;

• normalized if I(a ·1) = a;

• homogeneous of degree 1 (HD1) if I(aφ) = aI(φ) for a > 0 and φ,aφ ∈ Ln;

• constant additive if I(φ+ a ·1) = I(φ) + a

A.2 Clark derivatives and differentials

The contents in this subsection are mainly from Ghirardato, Maccheroni and Marinacci

(2004). Consider a monotonic, HD1 and constant additive functional I : Ln→ R. Then I

is locally Lipschitz. For φ ∈ int(Ln) and ξ ∈Rn, the Clarke upper directional derivative is

I◦(φ;ξ) = limsup
ϕ→φ,t↓0

I(ϕ − tξ)− I(ϕ)
t

.

The Clark differential at φ is defined by

∂I(φ) = {m ∈Rn : ⟨m,ξ⟩ ≤ I◦(φ;ξ), ∀ξ ∈ Ln}.

Christensen (1972) shows that if I is locally Lipschitz on Ln, then there exist K ⊆ int(Ln)

such that Ln \K has Lebesgue measure zero and I is Gateaux differentiable on K . Let ∇
denote a Gateaux derivative. The next result is Corollary A.5 in Ghirardato, Maccheroni

and Marinacci (2004).

Lemma A1. Suppose a functional I is locally Lipschitz and HD1 on Ln. Then we have

∂I(0) = co
{
∇I(φ) : φ ∈ K

}
,
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where K ⊆ int(Ln) is such that Ln\K has Lebesgue measure zero and I is Gateaux differentiable
on K .

We now review two Clarke (1990) results in the manner of Chandrasekher et al.

(2022).

Lemma A2 (Theorem 2.5.1 in Clarke (1990)). Suppose I : Ln→R is locally Lipschitz. Then
there exists K ⊆ int(Ln) such that Ln \K has Lebesgue measure zero and I is differentiable on
K . For each ϕ ∈ K and φ ∈ int(Ln), we have

∂I(φ) = co
{
lim
n
∇I(φn) : φn→ φ, φn ∈ K

}
.

Lemma A3 (Theorem 2.8.6 in Clarke (1990)). Suppose functional I : Ln→R is given by

I(·) = sup
t∈T

It(·)

for some indexed family of functionals (It)t∈T with domain Ln. Assume that there exists some
α > 0 such that |It(ϕ) − It(ξ)| ≤ α∥ϕ − ξ∥ for every t ∈ T and ϕ,ξ ∈ int(Ln). Then for every
φ ∈ int(Ln), we have

∂I(φ) ⊆ co
{

lim
i→∞
∇Iti (φi) : φi → φ, ti ∈ T , Iti (φ)→ I(φ)

}
.

We now review the Proposition A.3 in Ghirardato, Maccheroni and Marinacci (2004)

Lemma A4. Assume that 0 ∈ int(Ln) Let functional I : Ln→R be a locally Lipschitz. Then

1. If I is HD1, then ∂I(φ) ⊆ ∂I(0) for all φ ∈ int(Ln).

2. If I is monotonic and constant-additive, then ∂I(φ) ⊆ ∆(I ) for all φ ∈ int(Ln).

A.3 Boolean Representation

In this subsection, we review the Boolean representation of I , the LEMMA A.6 in Chan-

drasekher et al. (2022). Let K be the set given by Lemma A1.

Lemma A5. For each φ ∈ K , we have

I(φ) = max
ϕ∈K

inf
ξ∈Ξϕ

{
I(ξ) +∇I(ξ) · (φ− ξ)

}
,

where Ξϕ =
{
ξ ∈ K : I(ξ) +∇I(ξ) · (ϕ − ξ) ≥ I(ϕ)

}
.
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B Proof of Theorem 1

We first prove the sufficiency of the theorem. The proof consists of three parts. We first

demonstrate that the felicity aggregation function g : U n → U is utilitarian. Then, we

show that the discounting aggregation function h :D n→D is dual. Finally, we show that

the probability aggregation function k : P n → P is also geometric. Since f is equipped

with functions (g,h,k), together we demonstrate that f is a UMG aggregation function.

Part I: We prove the utilitarian aggregation for felicity functions.

Let

A = {a = u(x) | u ∈U n and x ∈ X}.

Lemma B1. For any a,b ∈ A, there exist u ∈U n and x,y ∈ X such that u(x) = a and u(y) = b.

Proof. Let a = (a1, . . . , an),b = (b1, . . . , bn) be in A. Let ξ ∈ U be such that, for some x,y ∈ X,

ξ(x) , ξ(y). The existence of ξ is obvious. Define u = (u1, . . . ,un) by for each i ∈ I

(6) ui(z) = ai
ξ(z)− ξ(y)
ξ(x)− ξ(y)

+ bi
ξ(z)− ξ(x)
ξ(x)− ξ(y)

for z ∈ X.

Clearly, each ui is mixture linear since ξ is mixture linear. Obviously, u is bounded.

Hence, u ∈U n. By construction, u(x) = a and u(y) = b.

Lemma B2. A is a convex set in R
n.

Proof. It is clear that A ⊆ R
n. We only demonstrate that A is convex. Let a,b ∈ A and

α ∈ (0,1). Construct u = (u1, . . . ,un) ∈U n as in (6). So, u(x) = a and u(y) = b. The convexity

of X implies that αx + (1 − α)y ∈ X. Therefore, u(αx + (1 − α)y) = αu(x) + (1 − α)u(y) =

αa + (1−α)b ∈ A by the definition of A.

Lemma B3. For any u,u′ ∈U n and x,y ∈ X, if u(x) = u′(y), then g(u)(x) = g(u′)(y).

Proof. Let u,u′ ∈ U n and x,y ∈ X be such that u(x) = u′(y). We know that U contains all

the constant functions. Therefore, there is a u′′ ∈ U n such that u′′(x) = u′′(y). IIA(i) im-

plies that g(u)(x) = g(u′′)(x) and g(u′)(y) = g(u′′)(y). SU(i) implies that g(u′′)(x) = g(u′′)(y).

Hence, g(u)(x) = g(u′)(y).

We define a preference relation ⊵ on A: for a,b ∈ A, we say a⊵b if there exist u ∈ U n

and x,y ∈ X such that u(x) = a,u(y) = b and g(u)(x) ≥ g(u)(y). By the previous lemmas,

it is straightforward that ⊵ is well-defined. Next, we show that ⊵ satisfies von-Neunman

Mongenstein axioms.

24



Lemma B4. ⊵ on A satisfies the following properties:

(i) ⊵ is a weak order;

(ii) For a,a′,a′′ ∈ A, if a▷ a′ ▷ a′′, then there exist λ,λ′ ∈ (0,1) such that λa + (1−λ)a′′ ▷ a′ ▷
λ′a′ + (1−λ′)a′′;

(iii) For a,a′ ∈ A, if a⊵ a′, then λa + (1−λ)a′′ ⊵λa′ + (1−λ)a′′ for all a′′ ∈ A and λ ∈ [0,1].

Proof. (i) To see ⊵ is a weak order, we show that it is complete and transitive. Complete-

ness of⊵ follows from Lemma B1 and the fact that g(u) is complete. To see the transitivity,

take a,a′,a′′ ∈ A such that a⊵ a′ and a′ ⊵ a′′. So, there exist u,u′ ∈ U n and x,y,x′, y′ ∈ X
such that

u(x) = a and u(y) = a′ and g(u)(x) ≥ g(u)(y)

u′(x′) = a′ and u′(y′) = a′′ and g(u′)(x′) ≥ g(u′)(y′).

Since u(y) = u′(x′) = a′, Lemma B3 implies g(u)(y) = g(u′)(x′). Therefore, g(u)(x) ≥
g(u′)(y′). By Lemma B1, there exist u′′ ∈ U and x′′, y′′ ∈ X such that u′′(x′′) = a and

u′′(y′′) = a′′. According to Lemma B3, g(u′′)(x′′) = g(u)(x) ≥ g(u′)(y′) = g(u′′)(y′′). There-

fore, a⊵ a′′ by definition.

(ii) Let a,a′,a′′ ∈ A be such that a▷a′▷a′′. So, there exist u,u′,u′′ ∈U n and x,y,x′, y′,x′′, y′′ ∈
X such that

u(x) = a and u(y) = a′′ and g(u)(x) > g(u)(y)

u′(x′) = a and u′(y′) = a′ and g(u′)(x′) > g(u′)(y′)

u′′(x′′) = a′ and u′′(y′′) = a′′ and g(u′)(x′′) > g(u′)(y′′)

By Lemma B3, we have

g(u)(x) = g(u′)(x′) and g(u′)(y′) = g(u′)(x′′) and g(u)(y) = g(u′)(y′′).

So, g(u)(x) > g(u′)(y′) > g(u)(y). Since g(u) is linear, there exists a unique λ∗ ∈ (0,1) such

that

g(u′)(y′) = g(u)(λ∗x+ (1−λ∗)y).
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Therefore, for λ ∈ (λ∗,1) and λ′ ∈ (0,λ∗), we have

g(u)(λx+ (1−λ)y) > g(u′)(y′) > g(u)(λ′x+ (1−λ′)y).

Linearity of u implies that u(λx + (1 − λ)y) = λa + (1 − λ)a′′ and u(λ′x + (1 − λ′)y) = λ′a +

(1−λ′)a′′. Hence, λa+ (1−λ)a′′ ▷ a′ ▷λ′a+ (1−λ′)a′′.

(iii) Let a,a′,a′′ ∈ A and λ ∈ [0,1]. Suppose that a⊵ a′. So, there exist u ∈ U n and x,y ∈
X such that u(x) = a,u(y) = a′ and g(u)(x) ≥ g(u)(y). Also, there exist u′,u′′ ∈ U n and

x′,x′′, y′, y′′ ∈ X such that

u′(x′) = a and u′(y′) = a′′

u′′(x′′) = a′ and u′′(y′′) = a′′.

So, u′(λx′ + (1−λ)y′) = λa + (1−λ)a′′ and u′′(λx′ + (1−λ)y′) = λa′ + (1−λ)a′′.
Therefore,

g(u′)(λx′ + (1−λ)y′) = λg(u′)(x′) + (1−λ)g(u′)(y′)

g(u′′)(λx′′ + (1−λ)y′′) = λg(u′′)(x′′) + (1−λ)g(u′′)(y′′)

Since u(x) = u′(x′), u(y) = u′′(x′′) and u′(y′) = u′′(y′′), Lemma B3 implies that g(u′)(x′) =

g(u)(x), g(u′′)(x′′) = g(u)(y) and g(u′)(y′) = g(u′′)(y′′). Hence,

g(u′)(λx′ + (1−λ)y′) ≥ g(u′′)(λx′′ + (1−λ)y′′).

Therefore, λa + (1−λ)a′′ ⊵λa′ + (1−λ)a′′.

Lemma B5. There exist nonnegative numbers α1, . . . ,αn such that, for any u ∈ U n, g(u)(x) =∑
i αiui(x) for all x ∈ X.

Proof. We know from the above Lemmas that ⊵ on A satisfies the three properties and A

is a convex set. According to, for instance, the mixture space theorem of Herstein and

Milnor (1953), there are real numbers α0,α1, . . . ,αn such that ⊵ is represented by a linear

function: for all a ∈ A,

a 7−→
∑
i

αiai +α0.

Furthermore, by SU(i), it is immediate to see that each αi is nonnegative for i , 0. Ac-

cording to the definition of ⊵, we must have for all u and x ∈ X, if u(x) = a, then g(u)(x) =
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∑
i αiai +α0 =

∑
i αiui(x) +α0. By the US axiom, g(u, . . . ,u) = u, which implies α0 = 0.

Part II: We prove the maximin aggregation for discount factors.

Lemma B6. There exists a monotonic, HD1, constant additive functional I : Rn → R such
that for all δ,δ′ ∈ (0,1)n

h(δ) ≥ h(δ′)⇐⇒ I(δ) ≥ I(δ′).

Proof. We first demonstrate that h is monotonic, HD1 and constant additive on (0,1)n. To

see monotonicity, we need to show that δ ≥ δ′ implies h(δ) ≥ h(δ′). Let u ∈ U and x,y ∈ X
be such that u(x) = 0 and u(y) = 1.Therefore, δ ≥ δ′ implies that for each i,

u(x) +u(y)δi ≥ u(x) +u(y)δ′i

According to IIA(ii), we have

g(u)(x) + g(u)(y)h(δ) ≥ g(u)(x) + g(u)(y)h(δ′).

As demonstrated, we know g(u) = u. So, it is immediate from the above that h(δ) ≥ h(δ′).

To see h is HD1, let δ,δ′ ∈ (0,1)n and a ∈ (0,1) be such that δ = aδ′. Take u,u′ ∈ U and

x,y ∈ X such that u(x) = u′(x) and a ·u(y) = u′(y) , 0. Therefore, for each i

u(x) +u(y)δi = u′(x) +u′(y)δ′i

By IIA(ii),

g(u)(x) + g(u)(y)h(δ) = g(u′)(x) + g(u′)(y)h(δ′).

Since g(u) = u and g(u′) = u′, we have u(y)h(δ) = u′(y)h(δ′), which is h(aδ′) = ah(δ′).

To see h is constant additive, assume that a ∈ R and δ,δ + a1 ∈ (0,1)n. Take u,u′ ∈ U
and x,y ∈ X such that u(x) = u′(x) + a and u(y) = u′(y) = 1. Obviously, for all i,

u(x) +u(y)δi = u′(x) +u′(y)(δi + a)

Therefore, IIA(ii) implies

g(u)(x) + g(u)(y)h(δ) = g(u′)(x) + g(u′)(y)h(δ+ a1).
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Again, g(u) = u and g(u′) = u′ imply that u(x) + u(y)h(δ) = u′(x) + u′(y)h(δ + a1), which is

a+ h(δ) = h(δ+ a1).

Now, we define functional I . First, if a ∈ (0,1)n, define I(a) = h(a). If a ∈ Rn
+ \ (0,1)n,

let a∗ = maxi ai + 1. Clearly, a
a∗ ∈ (0,1)n. So, define I(a) = a∗ · h( a

a∗ ). For the rest possible

a, let a∗ = minai − 1. Obviously, a − a∗ > 0. We, therefore, define I(a) = I(a − a∗) + a∗. By

this definition, it is routine to check that I is monotonic, constant additive and HD1 in

R
n.

The rest of proof is similar to the proof of Theorem 1 in Chandrasekher et al. (2022).

Let

Γ ∗B cl{Υ ∗φ : φ ∈Rn}, where Υ ∗φ = {γ ∈ ∂I(0) :
〈
γ,φ

〉
≥ I(φ)}.

Write γφ B ∇I(φ). Since I is locally Lipschitz and HD1, according to Lemma A1, ∇I(φ) ∈
∂I(0), which is γφ ∈ ∂I(0). Let the set K be such that Rn \K has Lebesgue measure zero.

Take φ ∈ K and a ∈ (0,1). HD1 of I implies that I(aφ) = aI(φ) and ∇I(aφ) = ∇I(φ).

Thus, I(aφ) is differentiable at each a ∈ (0,1). Hence,

(7) I(φ) =
〈
γφ,φ

〉
.

According to dual representation result, Lemma A5, we have

I(φ) = max
ϕ∈K

inf
ξ∈Ξϕ

{
I(ξ) +∇I(ξ) · (φ− ξ)

}
,

where Ξϕ =
{
ξ ∈ K : I(ξ) +∇I(ξ) · (ϕ − ξ) ≥ I(ϕ)

}
.

By (7), it can be simplified as following:

(8) I(φ) = max
ϕ∈K

inf
ξ∈Ξϕ

〈
γξ ,φ

〉
,

where Ξϕ =
{
ξ ∈ K :

〈
γξ ,ϕ

〉
≥ I(ϕ)

}
. Let Υϕ B

{
γξ : ξ ∈ K ;

〈
γξ ,ϕ

〉
≥ I(ϕ)

}
. Therefore, we

have ξ ∈ Ξϕ ⇐⇒ γξ ∈ Υϕ. Also, by Lemma A1, we know co(Υϕ) = Υ ∗ϕ. Hence, (8) can be

written as

(9) I(φ) = max
ϕ∈K

min
γ∈Υ ∗ϕ

〈
γ,φ

〉
.

Pick any φ,ϕ in R
n. Take sequences (φm) and (ϕm) in K such that φm→ φ and ϕm→ ϕ.
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For each m, let

γm ∈ arg min
γ∈Υ ∗ϕm

〈
γ,φm

〉
.

By the definition of Υ ∗ϕm
, we have

〈
γm,ϕm

〉
≥ I(ϕm).

Let γ∗ be such that γm → γ . The continuity of I implies that
〈
γ∗,ϕ

〉
≥ I(ϕ). Hence, we

have γ∗ ∈ Υ ∗ϕ.

Also, by (9), we know

〈
γm,φm

〉
= min

γ∈Υ ∗ϕm

〈
γ,φm

〉
≤
〈
γφm

,φm

〉
= I(φm).

Again, the continuity of I implies that

(10) min
γ∈Υ ∗ϕ

〈
γ,φ

〉
≤
〈
γ∗,φ

〉
≤ I(φ).

Since this inequality holds for arbitrary ϕ, it is true that for all Υ ∈ Γ ∗,

min
γ∈Υ

〈
γ,φ

〉
≤ I(φ).

According to the definition of Υ ∗φ, we have

min
γ∈Υ ∗φ

〈
γ,φ

〉
≥ I(φ).

Hence,

min
γ∈Υ ∗φ

〈
γ,φ

〉
≤ I(φ) ≤min

γ∈Υ ∗φ

〈
γ,φ

〉
,

which is

I(φ) = min
γ∈Υ ∗φ

〈
γ,φ

〉
= max

Υ ∈Γ ∗
min
γ∈Υ

〈
γ,φ

〉
.

Part III: We prove the geometric aggregation for probability measures.

Take E,F ∈ S t, define function ϕt
EF : (0,∞)n→ (0,∞) by for a ∈ (0,∞)n, where there is
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p ∈P n such that a =
(
p1(E)
p1(F) , . . . ,

pn(E)
pn(F)

)
,

ϕt
EF(a) =

k(p)(E)
k(p)(F)

.

We claim that this function is well-defined. For every t, define

B t =
{(p1(E)

p1(F)
, . . . ,

pn(E)
pn(F)

)
: p ∈P n and E,F ∈ S t

}
.

Note that (0,∞)n =B t. Since every p ∈ P has locally full support, the above equality is

clearly true. To see ϕt
EF is well-defined, it suffices to show that for p,p′ ∈P n,

(p1(E)
p1(F)

, . . . ,
pn(E)
pn(F)

)
=
(p′1(E)
p′1(F)

, . . . ,
p′n(E)
p′n(F)

)
implies

k(p)(E)
k(p)(F)

=
k(p′)(E)
k(p′)(F)

.

Notice that pi(E)
pi(F) =

p′i(E)
p′i(F) demonstrates that pi ,p

′
i have common-ratio between E and F.

Therefore, IIA(iii) requires that k(p) and k(p′) also have common-ratio between E and F,

which is k(p)(E)
k(p)(F) = k(p′)(E)

k(p′)(F) . Hence, for any E,F ∈ S t, function ϕt
EF is well-defined as above.

Lemma B7. For any E,F,G ∈ S t and p ∈P n,

ϕt
EF

(p1(E)
p1(F)

, . . . ,
pn(E)
pn(F)

)
·ϕt

FG

( p1(F)
p1(G)

, . . . ,
pn(F)
pn(G)

)
= ϕt

EG

(p1(E)
p1(G)

, . . . ,
pn(E)
pn(G)

)
.

Proof. It is straightforward by the definition.

ϕt
EF

(p1(E)
p1(F)

, . . . ,
pn(E)
pn(F)

)
·ϕt

FG

( p1(F)
p1(G)

, . . . ,
pn(F)
pn(G)

)
=
k(p)(E)
k(p)(F)

· k(p)(F)
k(p)(G)

=
k(p)(E)
k(p)(G)

=ϕt
EG

(p1(E)
p1(G)

, . . . ,
pn(E)
pn(G)

)

Lemma B8. For any E,F,E′,F′ ∈ S t and p ∈ P n, if
(
p1(E)
p1(F) , . . . ,

pn(E)
pn(F)

)
=
(
p1(E′)
p1(F′) , . . . ,

pn(E′)
pn(F′)

)
, then

ϕt
EF

(
p1(E)
p1(F) , . . . ,

pn(E)
pn(F)

)
= ϕt

E′F′

(
p1(E′)
p1(F′) , . . . ,

pn(E′)
pn(F′)

)
.

Proof. Let p ∈ P n be such that
(
p1(E)
p1(F) , . . . ,

pn(E)
pn(F)

)
=

(
p1(E′)
p1(F′) , . . . ,

pn(E′)
pn(F′)

)
= a. If E = E′, then
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pi(F) = pi(F′) for all i. By SU (ii), we have k(p)(F) = k(p)(F′). According to the definition,

it is immediate that

ϕt
EF(a) = ϕt

E′F(a).

Similarly, we have ϕt
EF(a) = ϕt

EF′ (a). Therefore,

ϕt
EF(a) = ϕt

E′F(a) = ϕt
E′F′ (a)

Based on the above result, the value of function ϕt
EF is independent of events E,F.

Therefore, we can subtract the subscript EF and use function ϕt to represent ϕt
EF .

Lemma B9. For any a ∈ (0,∞)n, ϕt(a) = ϕs(a).

Proof. We only need to consider the case where t , s. Without loss of generality, assume

that t < s. Pick a ∈ (0,∞)n. Let E,F ∈ S t. Let E′,F′ ∈ S s be such that there is ω ∈ Ω and

E′,F′ ∈ Fs(ω). Let p ∈P n be such that
(
p1(E)
p1(F) , . . . ,

pn(E)
pn(F)

)
=
(
p1(E′)
p1(F′) , . . . ,

pn(E′)
pn(F′)

)
= a.

Fix a state ω∗ = (ω∗0,ω
∗
1,ω

∗
2, . . .). Let E = (ω∗0, . . . ,ω

∗
t) and F = (ω∗0, . . . ,ω

∗
t−1,ωt), where

ω∗t ,ωt. Let E′ = (ω∗0, . . . ,ω
∗
s) and F′ = (ω∗0, . . . ,ω

∗
s−1,ωs), where ω∗s ,ωs.

According to updating rule, we have for each i,

pi(E
′ | s− t,ω∗) =

p({ω′ ∈ E′ : ω′s−t = ω∗s−t})
p({ω∗s−t})

and pi(F
′ | s− t,ω) =

p({ω′ ∈ F′ : ω′s−t = ω∗s−t})
p({ω∗s−t})

.

Therefore,
pi(E′ | t,ω)
pi(F′ | t,ω)

=
pi(E′)
pi(F′)

.

Since S s−t,s−t+1,... is homeomorphic to Ω, pi(· | s − t,ω) can be transformed into a proba-

bility in P . Let p′ ∈ P n be such that p′i(ω) = pi(ω∗s−tω | s − t,ω∗) for each i. Let E′′ =

(ω∗s−t+1, . . . ,ω
∗
s) and F′′ = (ω∗s−t+1, . . . ,ω

∗
s−1,ωs). We therefore have p′i(E

′′) = pi(E′ | s − t,ω∗)
and p′i(F

′′) = pi(F′ | s − t,ω∗). Hence, for each i,

p′i(E
′′)

pi(F′′)
=
pi(E)
pi(F)

.

Since E,F,E′′,F′′ ∈ S t, we have

ϕt(
p1(E)
p1(F)

, . . . ,
pn(E)
pn(F)

) = ϕt(
p′1(E′′)
p1(F′′)

, . . . ,
p′n(E′′)
pn(F′′)

),
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which implies
k(p)(E)
k(p)(F)

=
k(p′)(E′′)
k(p′)(F′′)

.

According to DC,

k(p′)(E′′) = k(p)(E′ | t,ω∗) and k(p′)(F′′) = k(p)(F′ | t,ω∗).

That is,
k(p′)(E′′)
k(p′)(F′′)

=
k(p)(E′ | t,ω∗)
k(p)(F′ | t,ω∗)

=
k(p)(E′)
k(p)(F′)

Since ϕt(a) = k(p)(E)
k(p)(F) and ϕs(a) = k(p)(E′)

k(p)(F′) , we must have ϕt(a) = ϕs(a).

Based on the above result, the value of function ϕt is independent of time t. Therefore,

we can subtract the superscript t and use function ϕ to represent ϕt.

Lemma B10. For any a,a′ ∈ (0,∞)n, ϕ(a · a′) = ϕ(a) ·ϕ(a′).

Proof. Pick any a,a′ ∈ (0,∞)n. There exist E,F,G ∈ S t and p ∈P n such that a = (p1(E)
p1(F) , . . . ,

pn(E)
pn(F) )

and a′ = ( p1(F)
p1(G) , . . . ,

pn(F)
pn(G) ). Therefore, a · a′ = ( p1(E)

p1(G) , . . . ,
pn(E)
pn(G) ). By definition of ϕ, we have

ϕ(a · a′) = ϕ(
p1(E)
p1(G)

, . . . ,
pn(E)
pn(G)

)

=
k(p)(E)
k(p)(G)

=
k(p)(E)
k(p)(F)

· k(p)(F)
k(p)(G)

= ϕ(a) ·ϕ(a′).

Lemma B11. ϕ is continuous, increasing and homogeneous of degree one.

Proof. Let a,a′ ∈ (0,∞)n be such that a ≥ a′. Accordingly, pick p ∈P n and E,F,G ∈ S t such

that a = ( p1(E)
p1(G) , . . . ,

pn(E)
pn(G) ) and a′ = ( p1(F)

p1(G) , . . . ,
pn(F)
pn(G) ). By assumption, for all i ∈ I , pi(E) ≥ pi(F).

Hence, p(E) ≥ p(F). Therefore, k(p)(E) ≥ k(p)(F) by SU (ii). According to the definition of
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ϕ, we have

ϕ(a)
ϕ(a′)

=
k(p)(E)
k(p)(G)

· k(p)(G)
k(p)(F)

=
k(p)(E)
k(p)(F)

≥ 1.

To see the homogeneous of degree one, first let a,a′ ∈ (0,∞)n and α ∈ (0,1] be such that

a = α · a′. Accordingly, pick p ∈ P n and E,F,G ∈ S t such that a = ( p1(E)
p1(G) , . . . ,

pn(E)
pn(G) ) and

a′ = ( p1(F)
p1(G) , . . . ,

pn(F)
pn(G) ). So, pi(F) = αpi(E) for each i. Therefore, IIA (iii) implies that k(p)(E) =

α · k(p)(F). Hence,

ϕ(a) =
k(p)(E)
k(p)(G)

= α · k(p)(F)
k(p)(G)

= α ·ϕ(a′).

Similarly, for the case where a = α · a′ and α > 1. It’s clear that a′ = 1
αa, where 1

α ∈ (0,1).

Applying the above process, we have ϕ(a′) = 1
αϕ(a), which is ϕ(a) = α · ϕ(a′). Hence,

ϕ is homogeneous of degree one. Finally, continuity follows directly from the axiom of

Continuity.

Lemma B12. There exist γ1, . . . ,γn ∈R+ with
∑
γi = 1 such that ϕ(a) =

∏n
i=1 a

γi
i .

Proof. Applying Cauchy’s equation again, the function ϕ must have the following form:

there exist γ1, . . . ,γn such that for all a ∈ (0,∞)n,

ϕ(a) =
n∏
i=1

a
γi
i .

By homogeneous of degree one, for any α ∈ (0,∞), we have ϕ(α ·1) = α. This implies that

ϕ(α ·1) =
n∏
i=1

αγi = α
∑n

i=1γi = α.

Therefore, we must have
∑n

i=1γi = 1. That each γi is non-negative follows directly from

the fact that ϕ is increasing.
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Now, we prove the necessity of the theorem. In fact, it is trivial to show that Continu-

ity, US, SU and IIA (i)&(ii) are necessary. We only demonstrate that DC and IIA (iii) are

necessary.

Necessity of Dynamic Consistency: Assume that, for {Wt,ω} and {Wt,ω}, f (W0) = W0.

Let Wi be equipped with (ui ,di ,pi) for each 0 ≤ i ≤ n. Therefore, we have, for some

nonnegative numbers {αi}, {βi}, {γi}

u0(x) =
n∑
i=1

αiui(x), and d0(τ) =
n∏
i=1

[di(τ)]βi , and p0(ωt) ∝
n∏
i=1

[pi(ω
t)]γi ,∀ωt ∈S .

Accordingly, for (t,ω),

d0,t(τ) =
d0(t + τ)
d0(t)

=
∏n

i=1[di(t + τ)]βi∏n
i=1[di(t)]βi

=
n∏
i=1

[di(t + τ)
di(t)

]βi
=

n∏
i=1

[
di,t(τ)

]βi
Also, for ω̂τ where τ > t and ω̂t = ωt,

p0,(t,ω)({ω̂τ }) =
p0({ω′ : ω′τ = ω̂τ })

p0(ωt)

=
∏n

i=1[pi({ω′ : ω′τ = ω̂τ })]γi∏n
i=1[pi(ωt)]γi

=
n∏
i=1

[pi({ω′ : ω′τ = ω̂τ })
pi(ωt)

]γi
=

n∏
i=1

[
pi,(t,ω)(ω̂

τ )
]γi

Clearly, for ω̂τ not satisfying τ > t and ω̂t = ωt, we know that pi,(t,ω)(ω̂τ ) = 0 for each

0 ≤ i ≤ n.

Necessity of IIA(iii): Assume that, for p,p′, each pi dominates p′i in probability-ratio
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between ωt and ω′t. By definition of dominance in probability-ratio, we know that for

1 ≤ i ≤ n,
pi(ωt)
pi(ω′t)

≥
p′i(ω

t)
p′i(ω

′t)
.

Therefore,
n∏
i=1

[ pi(ωt)
pi(ω′t)

]γi
≥

n∏
i=1

[ p′i(ωt)
p′i(ω

′t)

]γi
According to the geometric probability aggregation rule, we have k(p)(ωt)

k(p)(ω′t) ≥
k(p′)(ωt)
k(p′)(ω′t) .

C Proof of Theorem 2

In fact, we only need to prove the discounting aggregation is geometric. The proofs of

other two aggregation rules are identical to the proof of Theorem 1.

Lemma C13. For d ∈D n, if d(s) = γd(t) for some s, t ∈ T and γ > 0, then h(d)(s) = γh(d)(t).

Proof. Let d be such that d(s) = γd(t). Wlog, assume that γ < 1. So, t < s since d is

strictly decreasing. Since preference profile follows conditional preferences, we must

have dt(0) = 1 and dt(s − t) = γ ·1.

Let consumption stream ℓ,ℓ′ ∈ XT be such that

ℓ = (x,y, . . . , y, z︸︷︷︸
s−t

, y, . . . ) and ℓ′ = (w,y, . . . , y, x︸︷︷︸
s−t

, y, . . . ).

Clearly, ℓ,ℓ′ are co-diperiodic. Take W equipped with d′ and u, where d′ = dt and u be

such that u(x) = 1, u(y) = 0, u(z) = 2 ·1 and u(w) = (1 +γ) ·1. Therefore,

u ◦ ℓ = [1,0, . . . ,0, 2 ·1︸︷︷︸
s−t

,0, . . .] and u ◦ ℓ′ = [(1 +γ) ·1,0, . . . ,0, 1︸︷︷︸
s−t

,0, . . .]

Hence, W(ℓ) = (1+2γ) ·1 and W(ℓ′) = (1+2γ) ·1. By SU (iii)+, we have f (W)(ℓ) = f (W)(ℓ′).

According to the felicity aggregation result,

g(u)(x) = 1 and g(u)(y) = 0,

g(u)(z) = 2 and g(u)(w) = 1 +γ.
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Also, f (W) is equipped with h(d′). Thus,

f (W)(ℓ) = 1 + 2 · h(d′)(t − s) and f (W)(ℓ′) = 1 +γ + h(d′)(t − s).

Hence, h(d′)(t − s) = γ . Since dt = d′, it implies h(d′) = h(dt) = γ . DC requires that

h(d)(s) = γh(d)(t).

Lemma C14. There is a continuous and increasing function ϕ : (0,∞)n → (0,∞) such that,
for all s, t in T ,

ϕ
(d1(s)
d1(t)

, . . . ,
dn(s)
dn(t)

)
=
h(d)(s)
h(d)(t)

for all d.

Proof. Notice that {
a =

(d1(s)
d1(t)

, . . . ,
dn(s)
dn(t)

)
: d ∈D and s, t ∈ T

}
= (0,∞)n.

We first consider the case where a ∈ (0,1]∞. Then, there exist d and s ≥ t such that

a =
(
d1(s)
d1(t) , . . . ,

dn(s)
dn(t)

)
. Let d, d̂ be such that for some s, t, ŝ, t̂

a =
(d1(s)
d1(t)

, . . . ,
dn(s)
dn(t)

)
=
( d̂1(ŝ)

d̂1(t̂)
, . . . ,

d̂n(ŝ)

d̂n(t̂)

)
.

To demonstrate the function ϕ is well-defined, we want to show that for all u,

h(d)(s)
h(d)(t)

=
h(d̂)(ŝ)

h(d̂)(t̂)
.

Note that dt(s − t) = d̂t̂(ŝ − t̂). Let u be such that, for x,y,z ∈ X, u(x) = 1, u(y) = 0 and

u(z) = dt(s − t). Let ℓ,ℓ′, ℓ′′ ∈ X∞ be such that

ℓ = (x,y, . . . , y, x︸︷︷︸
s−t

, y, . . . ) and ℓ′ = (x,y, . . . , y, x︸︷︷︸
ŝ−t̂

, y, . . . ) and ℓ′′ = (z,y,y, . . .).

Let W′ and W′′ be, respectively, equipped with (d′ = dt,u) and (d′′ = dt̂,u). Since ℓ,ℓ′′ are

co-diperiodic and W′(ℓ) = W′(ℓ′′) = dt(s − t), SU (iii)+ implies that f (W′)(ℓ) = f (W′)(ℓ′′).
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Since g(u)(x) = 1 and g(u)(y) = 0, we know

f (W′)(ℓ) = 1 + h(d′)(s − t) and f (W′)(ℓ′′) = g(u)(z).

Similarly, ℓ′, ℓ′′ are co-diperiodic and W′′(ℓ′) = W′′(ℓ′′), which, by SU (iii)+ implies that

f (W′′)(ℓ′) = f (W′′)(ℓ′′). And we have,

f (W′′)(ℓ′) = 1 + h(d′′)(ŝ − t̂) and f (W′′)(ℓ′′) = g(u)(z).

Consequently,

h(d′)(s − t) = h(d′′)(ŝ − t̂),

which implies h(dt)(s − t) = h(dt̂)(ŝ − t̂). Hence, DC implies

h(d)(s)
h(d)(t)

=
h(d̂)(ŝ)

h(d̂)(t̂)
.

The proof of the other case where a ∈ [1,∞)n is similar simply because 1
a ∈ (0,1]n. Also,

the continuity of ϕ follows directly from the axiom of Continuity.

To see ϕ is increasing, take a,b ∈ (0,∞)n such that a ≥ b. There are three cases to

consider. Suppose that a,b ∈ (0,1]n. Then, there exist d and r ≥ s ≥ t such that

a =
(d1(s)
d1(t)

, . . . ,
dn(s)
dn(t)

)
and b =

(d1(r)
d1(t)

, . . . ,
dn(r)
dn(t)

)
.

Therefore,
ϕ(a)
ϕ(b)

=
h(d)(s)
h(d)(t)

· h(d)(t)
h(d)(r)

=
h(d)(s)
h(d)(r)

≥ 1.

The case where a,b ∈ [1,∞)n is symmetric and the proof is very similar. The third case is

a ∈ [1,∞)n and b ∈ (0,1]n. There are d and s ≥ t, s′ ≥ t′ such that

a =
(d1(t)
d1(s)

, . . . ,
dn(t)
dn(s)

)
and b =

(d1(s′)
d1(t′)

, . . . ,
dn(s′)
dn(t′)

)
.

Therefore,

ϕ(a) =
h(d)(t)
h(d)(s)

≥ 1 ≥ h(d)(s′)
h(d)(t′)

= ϕ(b).

Lemma C15. For any a,b ∈ (0,∞)n, ϕ(a ·b) = ϕ(a) ·ϕ(b).
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Proof. Take any a,b ∈ (0,∞)n, there exist d and r, s, t such that

a =
(d1(r)
d1(s)

, . . . ,
dn(r)
dn(s)

)
and b =

(d1(s)
d1(t)

, . . . ,
dn(s)
dn(t)

)
.

By definition of ϕ, it is immediate that

ϕ(a ·b) = ϕ
(d1(r)
d1(t)

, . . . ,
dn(r)
dn(t)

)
=
h(d)(r)
h(d)(t)

=
h(d)(r)
h(d)(s)

· h(d)(s)
h(d)(t)

= ϕ(a) ·ϕ(b).

Lemma C16. There exist non-negative numbers β1, . . . ,βn with
∑n

i=1βi = 1 such that, for any
(u,d), h(d) =

∏n
i=1d

βi
i .

Proof. Define function g : Rn→R by, for all a ∈Rn,

g(a) = ln(ϕ(exp(a))).

Clearly, for all a,b,

g(a) + g(b) = ln(ϕ(exp(a))) + ln(ϕ(exp(b))) = ln(ϕ(exp(a + b))) = g(a + b).

Since ϕ is continuous, we know that ϕ(b ·1) = b for any b ∈ (0,∞). So, take a ∈R,

g(a ·1) = ln(ϕ(exp(a ·1))) = a.

Furthermore, continuity of ϕ implies g is also continuous. Hence, applying Cauchy’s

equation, the function g must have the following form:

g(a) = β1a1 + · · ·+ βnan.

Also, g(a ·1) = a implies that
∑n

i=1βi = 1. Since ϕ is increasing, function g is also increas-

ing, which implies each βi is non-negative. Now, take any a ∈ (0,∞)n,

ln(ϕ(a)) = g(ln(a)) =
n∑
i=1

βi ln(ai).

Therefore, ϕ(a) =
∏n

i=1 a
βi
i .
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Take any d and t ∈ T . Clearly d(t) = d(t)
d(1) ∈ (0,∞)n. Hence,

h(d)(t) = ϕ(d(t)) =
n∏
i=1

[di(t)]
βi for all t ∈ T .
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